
Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

15

Introduction

1 Introduction
1.1 What Are Data Structures and Algorithms?

If this book is about data structures and algorithms, then perhaps we should start by defining these
terms. We begin with a definition for “algorithm.”

Algorithm: A finite sequence of steps for accomplishing some computational task. An algorithm
must

•	 Have steps that are simple and definite enough to be done by a computer, and
•	 Terminate after finitely many steps.

This definition of an algorithm is similar to others you may have seen in prior computer science courses.
Notice that an algorithm is a sequence of steps, not a program. You might use the same algorithm in
different programs, or express the same algorithm in different languages, because an algorithm is an
entity that is abstracted from implementation details. Part of the point of this course is to introduce you
to algorithms that you can use no matter what language you program in. We will write programs in a
particular language, but we are really studying the algorithms, not their implementations.

The definition of a data structure is a bit more involved. We begin with the notion of an abstract data type.

Abstract data type (ADT): A set of values (the carrier set), and operations on those values.

Here are some examples of ADTs:

Boolean—The carrier set of the Boolean ADT is the set {true, false}. The operations on these
values are negation, conjunction, disjunction, conditional, is equal to, and perhaps some others.

Integer—The carrier set of the Integer ADT is the set {…, -2, -1, 0, 1, 2, …}, and the operations
on these values are addition, subtraction, multiplication, division, remainder, is equal to, is
less than, is greater than, and so on. Note that although some of these operations yield other
Integer values, some yield values from other ADTs (like true and false), but all have at least
one Integer argument.

String—The carrier set of the String ADT is the set of all finite sequences of characters from
some alphabet, including the empty sequence (the empty string). Operations on string values
include concatenation, length of, substring, index of, and so forth.

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

16

Introduction

Bit String—The carrier set of the Bit String ADT is the set of all finite sequences of bits,
including the empty strings of bits, which we denote λ. This set is {λ, 0, 1, 00, 01, 10, 11,
000, …}. Operations on bit strings include complement (which reverses all the bits), shifts
(which rotates a bit string left or right), conjunction and disjunction (which combine bits at
corresponding locations in the strings), and concatenation and truncation.

The thing that makes an abstract data type abstract is that its carrier set and its operations are mathematical
entities, like numbers or geometric objects; all details of implementation on a computer are ignored.
This makes it easier to reason about them and to understand what they are. For example, we can decide
how div and mod should work for negative numbers in the Integer ADT without having to worry about
how to make this work on real computers. Then we can deal with implementation of our decisions as
a separate problem.

Once an abstract data type is implemented on a computer, we call it a data type.

Data type: An implementation of an abstract data type on a computer.

Thus, for example, the Boolean ADT is implemented as the boolean type in Java, and the bool type
in C++; the Integer ADT is realized as the int and long types in Java, and the Integer class in
Ruby; the String ADT is implemented as the String class in Java and Ruby.

Abstract data types are very useful for helping us understand the mathematical objects that we use in our
computations but, of course, we cannot use them directly in our programs. To use ADTs in programming,
we must figure out how to implement them on a computer. Implementing an ADT requires two things:

•	 Representing the values in the carrier set of the ADT by data stored in computer memory,
and

•	 Realizing computational mechanisms for the operations of the ADT.

Finding ways to represent carrier set values in a computer’s memory requires that we determine how
to arrange data (ultimately bits) in memory locations so that each value of the carrier set has a unique
representation. Such things are data structures.

Data structure: An arrangement of data in memory locations to represent values of the carrier
set of an abstract data type.

Realizing computational mechanisms for performing operations of the type really means finding
algorithms that use the data structures for the carrier set to implement the operations of the ADT. And
now it should be clear why we study data structures and algorithms together: to implement an ADT,
we must find data structures to represent the values of its carrier set and algorithms to work with these
data structures to implement its operations.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

17

Introduction

A course in data structures and algorithms is thus a course in implementing abstract data types. It
may seem that we are paying a lot of attention to a minor topic, but abstract data types are really the
foundation of everything we do in computing. Our computations work on data. This data must represent
things and be manipulated according to rules. These things and the rules for their manipulation amount
to abstract data types.

Usually there are many ways to implement an ADT. A large part of the study of data structures and
algorithms is learning about alternative ways to implement an ADT and evaluating the alternatives to
determine their advantages and disadvantages. Typically some alternatives will be better for certain
applications and other alternatives will be better for other applications. Knowing how to do such
evaluations to make good design decisions is an essential part of becoming an expert programmer.

1.2 Structure of the Book

In this book we will begin by studying fundamental data types that are usually implemented for us
in programming languages. Then we will consider how to use these fundamental types and other
programming language features (such as references) to implement more complicated ADTs. Along the
way we will construct a classification of complex ADTs that will serve as the basis for a class library of
implementations. We will also learn how to measure an algorithm’s efficiency and use this skill to study
algorithms for searching and sorting, which are very important in making our programs efficient when
they must process large data sets.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

18

Introduction

1.3 The Ruby Programming Language

Although the data structures and algorithms we study are not tied to any program or programming
language, we need to write particular programs in particular languages to practice implementing and using
the data structures and algorithms that we learn. In this book, we will use the Ruby programming language.

Ruby is an interpreted, purely object-oriented language with many powerful features, such as garbage
collection, dynamic arrays, hash tables, and rich string processing facilities. We use Ruby because it
is a fairly popular, full-featured, object-oriented language, but it can be learned well enough to write
substantial programs fairly quickly. Thus we will be able to use a powerful language and still have time to
concentrate on data structures and algorithms, which is what we are really interested in. Also, it is free.

Ruby is dynamically typed, does not support design-by-contract, and has a somewhat frugal collection
of features for object-oriented programming. Although this makes the language easier to learn and use,
it also opens up many opportunities for errors. Careful attention to types and mechanisms to help detect
type errors early, fully understanding preconditions for executing methods, and thoughtful use of class
hierarchies are important for novice programmers, so we will pay close attention to these matters in
our discussion of data structures and algorithms and we will, when possible, incorporate this material
into Ruby code. This sometimes results in code that does not conform to the style prevalent in the Ruby
community. However, programmers must understand and appreciate these matters so that they can
handle data structures in more strongly typed languages such as Java, C++, or C#.

1.4 Review Questions

1. What are the carrier set and some operations of the Character ADT?
2. How might the Bit String ADT carrier set be represented on a computer in some high level

language?
3. How might the concatenation operation of the Bit String ADT be realized using the carrier

set representation you devised for question two above?
4. What do your answers to questions two and three above have to do with data structures and

algorithms?

1.5 Exercises

1. Describe the carrier sets and some operations for the following ADTs:
a) The Real numbers
b) The Rational numbers
c) The Complex numbers
d) Ordered pairs of Integers
e) Sets of Characters
f) Grades (the letters A, B, C, D, and F)

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

19

Introduction

2. For each of the ADTs in exercise one, either indicate how the ADT is realized in some
programming language, or describe how the values in the carrier set might be realized using
the facilities of some programming language, and sketch how the operations of the ADT
might be implemented.

1.6 Review Question Answers

1. We must first choose a character set; suppose we use the ASCII characters. Then the carrier
set of the Character ADT is the set of ASCII characters. Some operations of this ADT
might be those to change character case from lower to upper and the reverse, classification
operations to determine whether a character is a letter, a digit, whitespace, punctuation, a
printable character, and so forth, and operations to convert between integers and characters.

2. Bit String ADT values could be represented in many ways. For example, bit strings might be
represented in character strings of “0”s and “1”s. They might be represented by arrays or lists
of characters, Booleans, or integers.

3. If bit strings are represented as characters strings, then the bit string concatenation
operation is realized by the character string concatenation operation. If bit strings are
represented by arrays or lists, then the concatenation of two bit strings is a new array or list
whose size is the sum of the sizes of the argument data structures consisting of the bits from
the first bit string copied into the initial portion of the result array or list, followed by the
bits from the second bit string copied into the remaining portion.

4. The carrier set representations described in the answer to question two are data structures,
and the implementations of the concatenation operation described in the answer to question
three are (sketches of) algorithms.

http://bookboon.com/

